Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
mBio ; 15(4): e0042724, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38501871

ABSTRACT

Apicomplexa parasites cause major diseases such as toxoplasmosis and malaria that have major health and economic burdens. These unicellular pathogens are obligate intracellular parasites that heavily depend on lipid metabolism for the survival within their hosts. Their lipid synthesis relies on an essential combination of fatty acids (FAs) obtained from both de novo synthesis and scavenging from the host. The constant flux of scavenged FA needs to be channeled toward parasite lipid storage, and these FA storages are timely mobilized during parasite division. In eukaryotes, the utilization of FA relies on their obligate metabolic activation mediated by acyl-co-enzyme A (CoA) synthases (ACSs), which catalyze the thioesterification of FA to a CoA. Besides the essential functions of FA for parasite survival, the presence and roles of ACS are yet to be determined in Apicomplexa. Here, we identified TgACS1 as a Toxoplasma gondii cytosolic ACS that is involved in FA mobilization in the parasite specifically during low host nutrient conditions, especially in extracellular stages where it adopts a different localization. Heterologous complementation of yeast ACS mutants confirmed TgACS1 as being an Acyl-CoA synthetase of the bubble gum family that is most likely involved in ß-oxidation processes. We further demonstrate that TgACS1 is critical for gliding motility of extracellular parasite facing low nutrient conditions, by relocating to peroxisomal-like area.IMPORTANCEToxoplasma gondii, causing human toxoplasmosis, is an Apicomplexa parasite and model within this phylum that hosts major infectious agents, such as Plasmodium spp., responsible for malaria. The diseases caused by apicomplexans are responsible for major social and economic burdens affecting hundreds of millions of people, like toxoplasmosis chronically present in about one-third of the world's population. Lack of efficient vaccines, rapid emergence of resistance to existing treatments, and toxic side effects of current treatments all argue for the urgent need to develop new therapeutic tools to combat these diseases. Understanding the key metabolic pathways sustaining host-intracellular parasite interactions is pivotal to develop new efficient ways to kill these parasites. Current consensus supports parasite lipid synthesis and trafficking as pertinent target for novel treatments. Many processes of this essential lipid metabolism in the parasite are not fully understood. The capacity for the parasites to sense and metabolically adapt to the host physiological conditions has only recently been unraveled. Our results clearly indicate the role of acyl-co-enzyme A (CoA) synthetases for the essential metabolic activation of fatty acid (FA) used to maintain parasite propagation and survival. The significance of our research is (i) the identification of seven of these enzymes that localize at different cellular areas in T. gondii parasites; (ii) using lipidomic approaches, we show that TgACS1 mobilizes FA under low host nutrient content; (iii) yeast complementation showed that acyl-CoA synthase 1 (ACS1) is an ACS that is likely involved in peroxisomal ß-oxidation; (iv) the importance of the peroxisomal targeting sequence for correct localization of TgACS1 to a peroxisomal-like compartment in extracellular parasites; and lastly, (v) that TgACS1 has a crucial role in energy production and extracellular parasite motility.


Subject(s)
Malaria , Toxoplasma , Toxoplasmosis , Humans , Toxoplasma/metabolism , Lipid Metabolism , Saccharomyces cerevisiae/metabolism , Toxoplasmosis/parasitology , Fatty Acids/metabolism , Nutrients , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
2.
Nat Commun ; 14(1): 5703, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37709739

ABSTRACT

Tryptophan Rich Antigens (TRAgs) are encoded by a multi-gene family found in all Plasmodium species, but are significantly expanded in P. vivax and closely related parasites. We show that multiple P. vivax TRAgs are expressed on the merozoite surface and that one, PVP01_0000100 binds red blood cells with a strong preference for reticulocytes. Using X-ray crystallography, we solved the structure of the PVP01_0000100 C-terminal tryptophan rich domain, which defines the TRAg family, revealing a three-helical bundle that is conserved across Plasmodium and has structural homology with lipid-binding BAR domains involved in membrane remodelling. Biochemical assays confirm that the PVP01_0000100 C-terminal domain has lipid binding activity with preference for sulfatide, a glycosphingolipid present in the outer leaflet of plasma membranes. Deletion of the putative orthologue in P. knowlesi, PKNH_1300500, impacts invasion in reticulocytes, suggesting a role during this essential process. Together, this work defines an emerging molecular function for the Plasmodium TRAg family.


Subject(s)
Malaria, Vivax , Plasmodium , Humans , Plasmodium vivax/genetics , Tryptophan , Antigens, Protozoan/genetics , Sulfoglycosphingolipids
3.
Malar J ; 22(1): 250, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653486

ABSTRACT

BACKGROUND: Plasmodium vivax is the second most prevalent cause of malaria yet remains challenging to study due to the lack of a continuous in vitro culture system, highlighting the need to establish a biobank of clinical isolates with multiple freezes per sample for use in functional assays. Different methods for cryopreserving parasite isolates were compared and subsequently the most promising one was validated. Enrichment of early- and late-stage parasites and parasite maturation were quantified to facilitate assay planning. METHODS: In order to compare cryopreservation protocols, nine clinical P. vivax isolates were frozen with four glycerolyte-based mixtures. Parasite recovery post thaw, post KCl-Percoll enrichment and in short-term in vitro culture was measured via slide microscopy. Enrichment of late-stage parasites by magnetic activated cell sorting (MACS) was measured. Short and long-term storage of parasites at either - 80 °C or liquid nitrogen were also compared. RESULTS: Of the four cryopreservation mixtures, one mixture (glycerolyte:serum:RBC at a 2.5:1.5:1 ratio) resulted in improved parasite recovery and statistically significant (P < 0.05) enhancement in parasite survival in short-term in vitro culture. A parasite biobank was subsequently generated using this protocol resulting in a collection of 106 clinical isolates, each with 8 vials. The quality of the biobank was validated by measuring several factors from 47 thaws: the average reduction in parasitaemia post-thaw (25.3%); the average fold enrichment post KCl-Percoll (6.65-fold); and the average percent recovery of parasites (22.0%, measured from 30 isolates). During short-term in vitro culture, robust maturation of ring stage parasites to later stages (> 20% trophozoites, schizonts and gametocytes) was observed in 60.0% of isolates by 48 h. Enrichment of mature parasite stages via MACS showed good reproducibility, with an average of 30.0% post-MACS parasitaemia and an average of 5.30 × 105 parasites/vial. Finally, the effect of storage temperature was tested, and no large impacts from short-term (7 days) or long-term (7-10 years) storage at - 80 °C on parasite recovery, enrichment or viability was observed. CONCLUSIONS: Here, an optimized freezing method for P. vivax clinical isolates is demonstrated as a template for the generation and validation of a parasite biobank for use in functional assays.


Subject(s)
Malaria, Vivax , Plasmodium vivax , Humans , Biological Specimen Banks , Reproducibility of Results , Parasitemia
4.
bioRxiv ; 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36993272

ABSTRACT

Background: Plasmodium vivax is the second most prevalent cause of malaria yet remains challenging to study due to the lack of a continuous in vitro culture system, highlighting the need to establish a biobank of clinical isolates with multiple freezes per sample for use in functional assays. Different methods for cryopreserving parasite isolates were compared and subsequently the most promising one was validated. Enrichment of early- and late-stage parasites and parasite maturation were quantified to facilitate assay planning. Methods: In order to compare cryopreservation protocols, nine clinical P. vivax isolates were frozen with four glycerolyte-based mixtures. Parasite recovery post thaw, post KCl-Percoll enrichment and in short-term in vitro culture was measured via slide microscopy. Enrichment of late-stage parasites by magnetic activated cell sorting (MACS) was measured. Short and long-term storage of parasites at either -80°C or liquid nitrogen were also compared. Results: Of the four cryopreservation mixtures, one mixture (glycerolyte:serum:RBC at a 2.5:1.5:1 ratio) resulted in improved parasite recovery and statistically significant (P<0.05) enhancement in parasite survival in short-term in vitro culture. A parasite biobank was subsequently generated using this protocol resulting in a collection with 106 clinical isolates, each with 8 vials. The quality of the biobank was validated by measuring several factors from 47 thaws: the average reduction in parasitemia post-thaw (25.3%); the average fold enrichment post KCl-Percoll (6.65-fold); and the average percent recovery of parasites (22.0%, measured from 30 isolates). During short-term in vitro culture, robust maturation of ring stage parasites to later stages (>20% trophozoites, schizonts and gametocytes) was observed in 60.0% of isolates by 48 hours. Enrichment of mature parasite stages via MACS showed good reproducibility, with an average 30.0% post-MACS parasitemia and an average 5.30 × 10 5 parasites/vial. Finally, the effect of storage temperature was tested, and no large impacts from short-term (7 day) or long term (7 - 10 year) storage at -80°C on parasite recovery, enrichment or viability was observed. Conclusions: Here, an optimized freezing method for P. vivax clinical isolates is demonstrated as a template for the generation and validation of a parasite biobank for use in functional assays.

5.
PLoS Pathog ; 18(3): e1010313, 2022 03.
Article in English | MEDLINE | ID: mdl-35298557

ABSTRACT

Apicomplexa are obligate intracellular parasites responsible for major human infectious diseases such as toxoplasmosis and malaria, which pose social and economic burdens around the world. To survive and propagate, these parasites need to acquire a significant number of essential biomolecules from their hosts. Among these biomolecules, lipids are a key metabolite required for parasite membrane biogenesis, signaling events, and energy storage. Parasites can either scavenge lipids from their host or synthesize them de novo in a relict plastid, the apicoplast. During their complex life cycle (sexual/asexual/dormant), Apicomplexa infect a large variety of cells and their metabolic flexibility allows them to adapt to different host environments such as low/high fat content or low/high sugar levels. In this review, we discuss the role of lipids in Apicomplexa parasites and summarize recent findings on the metabolic mechanisms in host nutrient adaptation.


Subject(s)
Apicomplexa , Apicoplasts , Parasites , Animals , Apicomplexa/metabolism , Humans , Lipid Metabolism , Lipids
6.
Nat Commun ; 12(1): 2813, 2021 05 17.
Article in English | MEDLINE | ID: mdl-34001876

ABSTRACT

Apicomplexa are obligate intracellular parasites responsible for major human diseases. Their intracellular survival relies on intense lipid synthesis, which fuels membrane biogenesis. Parasite lipids are generated as an essential combination of fatty acids scavenged from the host and de novo synthesized within the parasite apicoplast. The molecular and metabolic mechanisms allowing regulation and channeling of these fatty acid fluxes for intracellular parasite survival are currently unknown. Here, we identify an essential phosphatidic acid phosphatase in Toxoplasma gondii, TgLIPIN, as the central metabolic nexus responsible for controlled lipid synthesis sustaining parasite development. Lipidomics reveal that TgLIPIN controls the synthesis of diacylglycerol and levels of phosphatidic acid that regulates the fine balance of lipids between storage and membrane biogenesis. Using fluxomic approaches, we uncover the first parasite host-scavenged lipidome and show that TgLIPIN prevents parasite death by 'lipotoxicity' through effective channeling of host-scavenged fatty acids to storage triacylglycerols and membrane phospholipids.


Subject(s)
Cell Membrane/metabolism , Lipidomics/methods , Phosphatidate Phosphatase/metabolism , Phospholipids/metabolism , Protozoan Proteins/metabolism , Toxoplasma/metabolism , Cells, Cultured , Cytoplasm/metabolism , Endoplasmic Reticulum/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/parasitology , Foreskin/cytology , Gene Knockdown Techniques , Homeostasis/genetics , Host-Parasite Interactions , Humans , Male , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Phosphatidate Phosphatase/genetics , Protozoan Proteins/genetics , Toxoplasma/genetics , Toxoplasma/ultrastructure
7.
Cell Rep ; 30(11): 3778-3792.e9, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32187549

ABSTRACT

Apicomplexan parasites are unicellular eukaryotic pathogens that must obtain and combine lipids from both host cell scavenging and de novo synthesis to maintain parasite propagation and survival within their human host. Major questions on the role and regulation of each lipid source upon fluctuating host nutritional conditions remain unanswered. Characterization of an apicoplast acyltransferase, TgATS2, shows that the apicoplast provides (lyso)phosphatidic acid, required for the recruitment of a critical dynamin (TgDrpC) during parasite cytokinesis. Disruption of TgATS2 also leads parasites to shift metabolic lipid acquisition from de novo synthesis toward host scavenging. We show that both lipid scavenging and de novo synthesis pathways in wild-type parasites exhibit major metabolic and cellular plasticity upon sensing host lipid-deprived environments through concomitant (1) upregulation of de novo fatty acid synthesis capacities in the apicoplast and (2) parasite-driven host remodeling to generate multi-membrane-bound structures from host organelles that are imported toward the parasite.


Subject(s)
Adaptation, Physiological , Apicoplasts/metabolism , Cell Division , Host-Parasite Interactions , Lipid Metabolism , Parasites/metabolism , Toxoplasma/metabolism , Toxoplasma/physiology , Acyltransferases/metabolism , Animals , Cell Membrane/metabolism , Cytokinesis , Fatty Acid Synthases/metabolism , Fatty Acids/biosynthesis , Gene Deletion , Humans , Intracellular Space/parasitology , Life Cycle Stages , Lipidomics , Male , Models, Biological , Multivesicular Bodies/metabolism , Multivesicular Bodies/ultrastructure , Mutation/genetics , Nutrients , Parasites/growth & development , Parasites/physiology , Parasites/ultrastructure , Protozoan Proteins/metabolism , Toxoplasma/growth & development , Toxoplasma/ultrastructure
8.
Int J Mol Sci ; 19(10)2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30304836

ABSTRACT

Dinitroanilines are chemical compounds with high selectivity for plant cell α-tubulin in which they promote microtubule depolymerization. They target α-tubulin regions that have diverged over evolution and show no effect on non-photosynthetic eukaryotes. Hence, they have been used as herbicides over decades. Interestingly, dinitroanilines proved active on microtubules of eukaryotes deriving from photosynthetic ancestors such as Toxoplasma gondii and Plasmodium falciparum, which are responsible for toxoplasmosis and malaria, respectively. By combining differential in silico screening of virtual chemical libraries on Arabidopsis thaliana and mammal tubulin structural models together with cell-based screening of chemical libraries, we have identified dinitroaniline related and non-related compounds. They inhibit plant, but not mammalian tubulin assembly in vitro, and accordingly arrest A. thaliana development. In addition, these compounds exhibit a moderate cytotoxic activity towards T. gondii and P. falciparum. These results highlight the potential of novel herbicidal scaffolds in the design of urgently needed anti-parasitic drugs.


Subject(s)
Apicomplexa/physiology , Plants/metabolism , Plants/parasitology , Tubulin/metabolism , Animals , HeLa Cells , Humans , Microtubules/metabolism , Models, Molecular , Photosynthesis , Plant Cells/metabolism , Plasmodium falciparum , Protein Conformation , Tubulin/chemistry , Tubulin/genetics
9.
J Lipid Res ; 59(6): 994-1004, 2018 06.
Article in English | MEDLINE | ID: mdl-29678960

ABSTRACT

Apicomplexan parasites are pathogens responsible for major human diseases such as toxoplasmosis caused by Toxoplasma gondii and malaria caused by Plasmodium spp. Throughout their intracellular division cycle, the parasites require vast and specific amounts of lipids to divide and survive. This demand for lipids relies on a fine balance between de novo synthesized lipids and scavenged lipids from the host. Acetyl-CoA is a major and central precursor for many metabolic pathways, especially for lipid biosynthesis. T. gondii possesses a single cytosolic acetyl-CoA synthetase (TgACS). Its role in the parasite lipid synthesis is unclear. Here, we generated an inducible TgACS KO parasite line and confirmed the cytosolic localization of the protein. We conducted 13C-stable isotope labeling combined with mass spectrometry-based lipidomic analyses to unravel its putative role in the parasite lipid synthesis pathway. We show that its disruption has a minor effect on the global FA composition due to the metabolic changes induced to compensate for its loss. However, we could demonstrate that TgACS is involved in providing acetyl-CoA for the essential fatty elongation pathway to generate FAs used for membrane biogenesis. This work provides novel metabolic insight to decipher the complex lipid synthesis in T. gondii.


Subject(s)
Acetate-CoA Ligase/metabolism , Fatty Acids/chemistry , Fatty Acids/metabolism , Life Cycle Stages , Toxoplasma/enzymology , Toxoplasma/growth & development , Acetate-CoA Ligase/chemistry , Amino Acid Sequence , Cytosol/metabolism , Fatty Acids/biosynthesis , Models, Molecular , Nutrients/metabolism , Protein Conformation , Toxoplasma/metabolism
10.
J Biol Chem ; 292(2): 462-476, 2017 Jan 13.
Article in English | MEDLINE | ID: mdl-27881677

ABSTRACT

Elucidating the molecular mechanisms of the host-parasite interaction during red cell invasion by Plasmodium is important for developing newer antimalarial therapeutics. Recently, we have characterized a Plasmodium vivax tryptophan-rich antigen PvTRAg38, which is expressed by its merozoites, binds to host erythrocytes, and interferes with parasite growth. Interaction of this parasite ligand with the host erythrocyte occurs through its two regions present at amino acid positions 167-178 (P2) and 197-208 (P4). Each region recognizes its own erythrocyte receptor. Previously, we identified band 3 as the chymotrypsin-sensitive erythrocyte receptor for the P4 region, but the other receptor, binding to P2 region, remained unknown. Here, we have identified basigin as the second erythrocyte receptor for PvTRAg38, which is resistant to chymotrypsin. The specificity of interaction between PvTRAg38 and basigin was confirmed by direct interaction where basigin was specifically recognized by P2 and not by the P4 region of this parasite ligand. Interaction between P2 and basigin is stabilized through multiple amino acid residues, but Gly-171 and Leu-175 of P2 were more critical. These two amino acids were also critical for parasite growth. Synthetic peptides P2 and P4 of PvTRAg38 interfered with the parasite growth independently but had an additive effect if combined together indicating involvement of both the receptors during red cell invasion. In conclusion, PvTRAg38 binds to two erythrocyte receptors basigin and band 3 through P2 and P4 regions, respectively, to facilitate parasite growth. This advancement in our knowledge on molecular mechanisms of host-parasite interaction can be exploited to develop therapeutics against P. vivax malaria.


Subject(s)
Antigens, Protozoan/metabolism , Basigin/metabolism , Erythrocytes/metabolism , Plasmodium vivax/metabolism , Anion Exchange Protein 1, Erythrocyte/metabolism , Erythrocytes/parasitology , Humans , Malaria, Vivax/drug therapy , Malaria, Vivax/metabolism , Peptides/pharmacokinetics , Protein Binding/drug effects , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...